FIU College of Engineering and Computing

Florida International University - Electrical and Computer Engineering
Main Content

Sakhrat Khizroev

Education

  • Ph.D. in Electrical and Computer Engineering, Carnegie Mellon University, 1996-1999
  • M.S. in Physics, University of Miami, 1993-1994
  • B.S./M.S. in Physics, Moscow Institute of Physics and Technology (MIPT), 1987-1994

TEDxCoconutGrove Talk on Technobiology, March 2, 2018
TEDxFIU Talk on Cancer Nanotechnology, November 5, 2015

Research Interests

  • Director of FIU Center for Personalized Nanomedicine.
  • Physics and Engineering of Nanomagnetics/Spintronics with applications in Energy-efficient Information Processing and Medicine
  • Medical Engineering
  • Cellular Neuroscience, Cancer Biology
  • Deep-brain Drug Delivery
  • Neurodegenerative Diseases
  • Viral and Bacterial Identification/Treatment
  • Reverse-engineering the Brain
  • Quantum Computing

Biography

Citizenship: U.S.A.
Born: June 12, 1970, Makhachkala, USSR

Physicist and Electrical Engineer by training, Sakhrat Khizroev is a Professor at two FIU Colleges, Engineering and Medicine, respectively. His research focus is on the basic study of nanomagnetic and spintronic devices to enable leapfrog advances in a broad range of applications including next-generation information processing and nanomedicine. His background in a reverse chronological order is given below.

In 2011, Khizroev came back to FIU to undertake a challenging task of working hand-in-hand with his colleagues at the recently established Herbert Wertheim College of Medicine to create a world-class university-wide research initiative in the emerging field of patient- and disease-specific medicine (Personalized Nanomedicine). The main mission is to use nanotechnology to bridge advances in fundamental research with the current need in medicine. He started his medical career as a Professor at the Department of Immunology where he also served as Vice Chairman. Since 2014, Khizroev’s main appointment is at the Department of Cellular Biology and Pharmacology – the heart of cross-disciplinary research at the College of Medicine. From 2006 to 2011, Khizroev was a tenured faculty (Professor in 2009-2011 and Associate Professor in 2006-2008) at the Department of Electrical Engineering of the University of California, Riverside (UCR). He started his academic career in 2003 as an Associate Professor at the Department of Electrical and Computer Engineering at FIU, where he was tenured in 2005.

Prior to his academic career, Khizroev spent four years as a Research Staff Member with Seagate Research (1999-2003) and one year as a Doctoral Intern with IBM Almaden Research Center (1997-1998). He holds over 35 granted patents with IBM, Seagate, CMU, FIU, and UCR. He has authored/co-authored over 130 refereed papers, 5 books and book chapters in a broad range of nanotechnology applications with an emphasis on the physics of nanomagnetics/spintronics. He has presented over 100 talks including many invited seminars and colloquia at international conferences and meetings. He has acted as a guest science and technology commentator on television and radio programs across the globe. He was one of the co-founding editors for IEEE Transactions on Nanotechnology, a guest editor for Nanotechnology and IEEE Transactions on Magnetics. He sits on editorial boards of several Science and Technology journals. Khizroev received a BS in Physics from Moscow Institute of Physics and Technology, a MS in Physics from the University of Miami, and a PhD in Electrical and Computer Engineering from Carnegie Mellon University in 1992, 1994, and 1999, respectively.

As an Electrical Engineer, Khizroev is best known for leading the groundbreaking 1997 IBM-CMU demonstration of Perpendicular Magnetic Recording (PMR). The demonstration, that for the first time revealed the key advantages of PMR over the state-of-the-art longitudinal recording, became the turning point that marked the shift in the multi-billion-dollar industry towards the new technology. (In 2012, Khizroev was elected a Fellow of National Academy of Inventors (NAI).) Other pioneering concepts that came under his supervision include three-dimensional (3D) multilevel memory, near-field optical transducers (Nanolasers) for 5-nm diagnostics, protein nanoelectronics, graphene spintronics, nanodevices for non-invasive brain stimulation and neural network studies, nanoparticles for drug delivery and on-demand drug release, multifunctional nanoparticles for high-specificity cancer treatment. The research activities in his group have been supported through numerous competitive grants from National Institute of Health (NIH), National Science Foundation, Department of Defense (DoD), Department of Energy (DoE), States of Florida and California, and private foundations and companies including IBM, Western Digital, Seagate, Motorola, and others.

In 2015, Khizroev and his group joined NSF Center for Energy-efficient Electronics Science (E3S) based at the University of California – Berkeley. The Khizroev group’s role is to develop next-generation spin-based energy-efficient information processing devices.

In the News

Selected Publications

  1. Hong, M. Stone, B. Navarette, K. Luongo, J. Bokor, S. Khizroev, “Multilevel three-dimensional spin computer,” Applied Physics Letters 112, 112402-4 (2018)
  2. Guduru, P. Liang, M. Yousef, J. Horstmyer, and S. Khizroev, “Electric field mapping of the brain with magnetoelectric nanoparticles,” Bioelectronic Medicine 4 (10): s42234-018-0012-9 (2018)
  3. Stewart, A. Nagesetti, R. Guduru, E. Stimphil, A. Hadjikhani, L. Salgueiro, P. Liang, J. Horstmyer, A. Schally, and S. Khizroev, “Magnetoelectric nanoparticles to deliver and release anti-tumor peptide into glioblastoma cells across blood-brain barrier via external application of d.c. and a.c. magnetic fields,” Nanomedicine (London) 13 (4): 423-438 (2017); doi/org/10.2217/nnm-2017-0300
  4. Hadjikhani, A. Rodzinski, P. Wang, A. Nagesetti, R. Guduru, P. Liang, C. Runowicz, S. Shahbazmohamadi, and S. Khizroev,”Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy,” Nanomedicine (London) 12 (15); 1801-1822 (2017); doi.org/10.2217/nnm-2017-0080
  5. Nagesetti, A. Rodzinski, E. Stimphil, T. Stewart, C. Khanal, P. Wang, R. Guduru, P. Liang, I. Agoulnik, J. Horstmyer, and S. Khizroev, “Multiferroic coreshell magnetoelectric nanoparticles as NMR sensitive nanoprobes for cancer cell detection,” Scientific Reports 7, 1610 (2017)
  6. Stimphil, A. Nagasetti, R. Guduru, T. Stewart, A. Rodzinski, P. Liang, and S. Khizroev, “Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles,” Appl. Phys. Rev., 4 (2), 021101 (2017)
  7. Hong, A. Hadjikhani, M. Stone, F. Allen, V. Safonov, P. Liang, J. Bokor, and S. Khizroev, “The physics of spin-transfer torque switching in magnetic tunneling junctions in sub-10-nm size range,” IEEE Trans. Magn. 52 (7), 1400504 (2016)
  8. Rodzinski, R. Guduru, P. Liang, A. Hadjikhani, T. Stewart, E. Stimphil, C. Runowicz, R. Cote, N. Altman, R. Datar, and S. Khizroev, “Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles,” Scientific Reports 6, 20867 (2016); Cancer Research 76 (14 S), 2204 (2016)
  9. Guduru, P. Liang, J. Hong, A. Rodzinski, A. Hadjikhani, J. Horstmyer, E. Levister, and S. Khizroev, “Magnetoelectric “spin” on stimulating the brain,” Nanomedicine (London) 10 (13), 2051-2061 (2015)
  10. Butler, M. Shachar, B. Lee, D. Garcia, B. Hu, J. Hong, N. Amos, and S. Khizroev, “Reconfigurable and non-volatile vertical magnetic logic gates,” Journal of Applied Physics 115, 163903 (2014)
  11. Guduru and S. Khizroev, “Magnetic-field-controlled release of paclitaxel drug from functionalized magneto-electric nanoparticles,” Particle and Particle Systems Characterization 31 (5), 605-611 (2014)
  12. Cheng, S. Khizroev, P. Liang, “3-Terminal pMTJ reduces critical current and switching time,” JMMM 358, 5-10 (2014)
  13. Hong, E. Bekyarova, W. de Heer, R. Haddon, and S. Khizroev, “Chemically engineered graphene-based 2-D organic molecular magnet,” ACS Nano 7(11), Article ASAP 10011-10022 (2013)
  14. Guduru, P. Liang, C. Runowicz, M. Nair, V. Alturi, and S. Khizroev, “Magnetoelectric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells,” Scientific Reports 3, 2953 (2013)
  15. Zheng, L. Chang, I. Nekrashevich, P. Ruchoeft, S. Khizroev, and D. Litvinov, “Fabrication of dense non-circular nanomagnetic device arrays using self-limiting low-energy glow-discharge processing,” PL0S ONE 8(8), e73083 (2013)
  16. Lee, J. Hong, N. Amos, D. Litvinov, and S. Khizroev, “Electron-beam lithography to fabricate magnetic bit patterned media suitable for areal densities above 1 terabit/in2,” J. Nanoparticle Research 15, 1665-72 (2013)
  17. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, and S. Khizroev, “Externally-controlled on-demand release of anti-HIV drug AZTTP using magneto-electric nanoparticles as carriers,” Nature Communications 4, 1707 (2013)
  18. Hong, P. Liang, V. Safonov, and S. Khizroev, “Energy-efficient spin-transfer-torque based sub-10-nm magnetic tunneling junctions,”  J. Nanoparticle Research 15 (4), 1599 (2013)
  19. Stefanescu, J. Hong, R. Guduru, A. Lavrenov, D. Litvinov, and S. Khizroev, “Magneto-resistive nanojunctions fabricated via focused ion beam implantation,” J. Nanoparticle Research 15 (1), 1387-1390 (2013)
  20. Hong, E. Bekyarova, P. Liang, W. de Heer, R. Haddon, and S. Khizroev, “Room-temperature magnetic-order in functionalized graphene,” Scientific Reports 2, 624 (2012)
  21. Yue, R. Guduru, J. Hong, P. Liang, M. Nair, and S. Khizroev, “Magneto-electric nanoparticles for non-invasive brain stimulation,” PLoS ONE 7(9), e44040 (2012)
  22. V. Chang, A. Nasruallah, P. Ruchoeft, S. Khizroev, D. Litvinov, “Graded bit patterned magnetic array fabricated via angled low-energy H ion irradiation,” Nanotechnology 23 (27), 275705 (2012)
  23. Hong, E. Stefanescu, P. Liang, N. Joshi, S. Xu, and S. Khizroev, “Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics,” PLoS ONE 7 (7), e40554, (2012)
  24. Amos, J. Butler, B. Lee, M. Scachar, B. Hu, Y. Tian, J. Hong, D. Garcia, R. Ikkawi, R. Haddon, D. Litvinov, and S. Khizroev, “Multilevel-3D bit patterned magnetic media with 8 signal levels per nanocolumn,” PLoS ONE 7 (7), e401234 (2012)
  25. Hong, S. Niyogi, E. Bekyarova, M. Itkis, P. Ramesh, R. C. Haddon, C. Berger, W. A. DeHeer, and S. Khizroev, “Effect of functionalization on the electrostatic charging, tunneling, and Raman spectroscopy of epitaxial graphene,” JVST BMicroelectronics and Nanometer Structures 30 (3), 1-5 (2012)
  26. Kaganovskiy, S. Khizroev, D. Litvinov, “Influence of low anisotropy inclusions on magnetization reversal in bit-patterned arrays”, J. Appl. Phys. 111, 033924  (2012)
  27. Chang, R. Veerdonk, S. Khizroev, D. Litvinov, “Scanning magnetoresistance microscopy analysis of bit patterned media playback,” IEEE Trans. Magn. 47 (10), 2548-2550 (2011)
  28. Amos, E. Stefanescu, J. Butler, B. Lee, Y. Tian, R. Ikkawi, R. Chomko, V. L. Safonov, R. Haddon, D. Litvinov, and S. Khizroev, “Three-dimensional non-volatile magnetic universal logic gates,” JNO 6 (2), 138-43 (2011)
  29. Sandip, E. Bekyarova, H. Jeongmin, S. Khizroev, C. Berger, W. De Heer, R. Haddon, “Covalent chemistry for graphene electronics,” J. Phys. Chem. Lett. 2 (19), 2487-98 (2011)
  30. Tian, L. Kaganovskiy, N. Amos, B. Hu, D. Litvinov, and S. Khizroev, “Effects of crystalline anisotropy on nanomagnetic computer logic channels,” JNO 6 (2), 87-94 (2011)
  31. Kaganovskiy, D. Litvinov, S. Khizroev, and S. Wilcox, “Investigation of the switching wave propagation in linear chains of magnetic elements,” J. Appl. Phys. 110, 043901 (2011)
  32. R. Morales, N. Amos, S. Khizroev, J.E.Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109 (9), 093110 (2011)
  33. Fernandez, D. Teweldebrham, C.Zhang, N.Amos, A. Balandin, and S. Khizroev, “A comparative analysis of Ag and Cu heat sink layers in L10-FePt films for the high-density heat-assisted magnetic recording,” J. Appl.Phys. 109, 07B763 (2011)
  34. Hong, E. Bekyarova, M. Itkis, P. Ramesh, N. Amos, D. Litvinov, C. Berger, W. A. De Heer, S. Khizroev, R. C. Haddon, , “Effect of nitrophenyl functionalization on the magnetic properties of epitaxial graphene,” SMALL 7 (9), 1175-80 (2011)
  35. Hudgins, S. Khizroev, “Considerations for the implementation of 2D protein memory,” J. Nanoscience and Nanotechnology 11 (3), 2520-3 (2011)
  36. Hu, N. Amos, Y. Tian, J. Butler, D. Litvinov, S. Khizroev, “Study of Co/Pd multilayers as a candidate material for next generation magnetic media,” J. Appl. Phys. 109 (3), 034314 (2011)
  37. Hijazi, E. B. Svedberg, T. Heinrich, S. Khizroev, “Comparative corrosion study of binary oxide and nitride overcoats using in-situ fluid-cell AFM,” Materials Characterization 62 (1), 76-80 (2011)
  38. Fernandez, N. Amos, C. Zhang, M. Hudgins, and S. Khizroev, “Microstructural enhancement of high coercivity L10 FePt films for next-generation magnetic recording media,” J. Nanoscience and Nanotechnology 11 (5), 3889-93 (2011)
  39. Hudgins, J. Butler, R. Fernandez, M. J. Ranaghan, R. Birge, R. Haddon, S. Khizroev, “Photo-response of electrostatically deposited bacteriorhodopsin monolayer films for protein-based disk recording beyond 10 terabit/in2,” JNO 5 (3), 287-9 (2010)
  40. Amos, R. Fernandez, R. Ikkawi, M. Shachar, J. Hong, B. Lee, D. Litvinov, and S. Khizroev, “Ultra-high coercivity magnetic force microscopy probes to analyze high-moment magnetic structures and devices,” IEEE Magnetics Letters 1, 6500104 (2010)
  41. Zhang, N. Amos, R. Fernandez, J. Hong, B. Hu, S. Khizroev, “Magnetic properties optimization for amorphous soft underlayers,” Journal of Nanoelectronics and Optoelectronics, 5 (1), 13-19 (2010)
  42. Gomez, R. Fernandez, N. Amos, S. Khizroev, C. Lopez, “A mathematical algorithm and custom nanoprobes to improve the resolution of magnetic force microscopy (MFM) images,” Journal of Nanoelectronics and Optoelectronics, 5 (1), 20-26 (2010)
  43. Smith, L. Chang, J. Rantschler, V. Kalatsky, P. Ruchoeft, S. Khizroev, D. Litvinov, “Size distribution and anisotropy effects on the switching field distribution of Co/Pd multilayered nanostructure arrays,” IEEE Trans. Magn. 45 (10), 3554-7 (2009)
  44. Amos, A. Lavrenov, R. Fernandez, R. Ikkawi, D. Litvinov, and S. Khizroev, “High-resolution and high-coercivity FePt L10 magnetic force microscopy nanoprobes to study next-generation magnetic recording media,” J. Appl. Phys. 105, 07D526 (2009)
  45. Krichevsky, A. Lavrenov, N. Amos, B. Hu, K. Taylor, and S. Khizroev, “The effect of ion implantation on magnetic properties of Co/Pd multilayer structures possessing perpendicular anisotropy,” J. Nanoelectronics and Optoelectronics 3 (3), 274-6 (2008)
  46. Amos, R. Ikkawi, R. Haddon, D. Litvinov, and S. Khizroev, “Controlling multi-domain states to enable sub-10-nm magnetic force microscopy,” Appl. Phys. Lett. 93, 203116 (2008); Editor’s choice for inclusion in the December 8, 2008 issue of Virtual Journal of Nanoscale Science and Technology
  47. E., J. Rantschler, S. Khizroev, D. Litvinov, “Micromagnetic study of domain wall dynamics in bit-patterned nanodots,” J. Appl. Phys. 103, 113910 (2008)
  48. Stefanescu, N. Amos, R. Ikkawi, B. Lee, R. Chomko, D. Litvinov, S. Khizroev, “Perpendicular recording with reduced skew angle sensitivity,” J. Nanoelectronics and Optoelectronics 3 (4), 270-3 (2008)
  49. E, J. Rantschler, S. Khizroev, D. Litvinov, “Micromagnetics of signal propagation in magnetic cellular logic data channels,” J. Appl. Phys. 104, 054311 (2008)
  50. Litvinov, V. Parekh, C. E, D. Smith, J. Rantschler, P. Ruchhoeft, D. Weller, and S. Khizroev, “Nanoscale bit-patterned media for next-generation data storage systems,” J. Nanoelectronics and Optoelectronics 3 (2), 93-112 (2008)
  51. Gomez, D. Litvinov, and S. Khizroev, “A nanoscale nuclear magnetic resonance system for signature-based detection of biomolecules,” J. Nanoelectronics and Optoelectronics 3 (2), 123-32 (2008)
  52. Litvinov, V. Parekh, C. E, D. Smith, J. Rantschler, P. Ruchhoeft, D. Weller, and S. Khizroev, “Recording physics, design considerations, and fabrication of nanoscale bit-patterned media,” IEEE Trans. Nanotechnology 7 (4), 463-76 (2008)
  53. Khizroev, R. Ikkawi, N. Amos, R. Chomko, R. Haddon, D. Litvinov, “Protein-based memory,” Materials Research Society (MRS) Bulletin 33 (9), 864-71 (2008)
  54. Ikkawi, A. Krichevsky, A. Lavrenov, N. Amos, D. Litvinov, S. Khizroev, “Exploiting far- and near-field optics to develop energy efficient transducer for HAMR,” IEEE Trans. Magn. 44 (11), 3364-7 (2008)
  55. Gomez, D. Litvinov, S. Khizroev, “Minimum parameters required to enable low-field low-size nano nuclear magnetic resonance (NanoNMR),” IEEE Trans. Magn. 44 (11), 4464-7 (2008)
  56. E, J. Rantschler, S. Zhang, S. Khizroev, T. R. Lee, D. Litvinov, “Low-temperature vacuum annealing study of (Co/Pd)n magnetic multilayers,” J. Appl. Phys. 103, 07B510 (2008)
  57. Smith, V. Parekh, C. E, S. Zhang, W. Donner, T. R. Lee, S. Khizroev, D. Litvinov, “Magnetization reversal and magnetic anisotropy in patterned Co/Pd multilayer thin films,” J. Appl. Phys. 103, (2008)
  58. Hernandez, E. Stefanescu, S. Khizroev, N. Myung, “Electrodeposition of iron-palladium thin films,” Electrochimica Acta 53 (18), 5621-27 (2008)
  59. Ikkawi, A. Lavrenov, A. Krichevsky, D. Teweldebrhan, S. Ghosh, A. A. Balandin, D. Litvinov, and S. Khizroev, “Near-field optical transducer for heat-assisted magnetic recording for beyond 10-terabit/in2 densities, J. Nanoelectronics and Optoelectronics 3, 44-54 (2008)
  60. Amos, R. Fernandez, R. Ikkawi, B. Lee, A. Lavrenov, A. Krichevsky, D. Litvinov, S. Khizroev, “Magnetic force microscopy study of magnetic stripe domains in sputter deposited Permalloy thin films, “ J. Appl. Phys. 103 (7), 07E732 (2008)
  61. Amos, R. Ikkawi, A. Krichevsky, R. Fernandez, E. Stefanescu, I. Dumer, D. Litvinov, S. Khizroev, “Multilevel three-dimensional nanomagnetic recording,” J. Nanoelectronics and Optoelectronics 2, 257-68 (2007)
  62. Litvinov, Ch. E, V. Parekh, D. Smith, J. Rantschler, S. Zhang, W. Donner, T. R. Lee, P. Ruchhoeft, D. Weller, and S. Khizroev, “Design and fabrication of high anisotropy nanoscale bit-patterned magnetic recording medium for data storage applications, ECS Transactions 3 (25), 249-58 (2007)
  63. Ikkawi, N. Amos, A. Krichevsky, R. Chomko, D. Litvinov, S. Khizroev, “Nanolasers to enable data storage beyond 10 terabit/in2, “Appl. Phys. Lett. 91 (15), 3115-6 (2007); Editor's choice for the Virtual Journal of Nanoscale Science & Technology, October 19 (2007)
  64. S. Martirosyan, L. Chang, J. Rantschler, S. Khizroev, D. Luss, D. Litvinov, “Carbon combustion synthesis and magnetic properties of cobalt ferrite nanoparticles,” IEEE Trans. Magn. 43 (6), 3118-20 (2007)
  65. Parekh, D. Smith, Chunsheng E, J. Rantschler, S. Khizroev, D. Litvinov, “He+ ion irradiation study of continuous and patterned Co/Pd multilyaers,” J. Appl. Phys. 101, 083904 (2007)
  66. Gomez, D. Litvinov, and S. Khizroev, “A method to design high SNR nanoscale magnetic sensors using an array of tunneling magneto-resistive (TMR) devices,” Journal of Physics D: Applied Physics 40, 4396-404 (2007)
  67. Chunsheng E, J. Rantschler, S. Zhang, D. Smith, V. Parekh, Khizroev, D. Litvinov, “Integranular interactions of low temperature atmosphere annealed Co/Pd magnetic multilayers,” J. Appl. Phys. 101, 09D108 (2007)
  68. Renugopalakrishnan, S. Khizroev, H. Anand, L. Pingzuo, L. Lindvold, “Future memory storage technology: protein-based memory devices may facilitate surpassing Moore’s Law,” IEEE Trans. Magn. 43 (2), 773-5 (2007)
  69. Khizroev, Y. Hijazi, N. Amos, E. Felissaint, N. Joshi, R. Ikkawi, R. Chomko, and D. Litvinov, “Physics of Perpendicular Recording with a Patterned Soft Underlayer,” special information technologies issue, J. Nanoscience and Nanotechnology 7, 243-54 (2007)
  70. Amos, R. Ikkawi, A. Lavrenov, P. Gomez, R. Chomko, F. Candocia, D. Litvinov, S. Khizroev “Nanomagnetic probes to image patterned media for information densities above ten terabit-per-square-inch,” J. Nanoelectronics and Optoelectronics 2, 1-3 (2007)
  71. Smith, Chunsheng E., S. Khizroev, D. Litvinov, “The influence of bit patterned medium design and imperfections on magnetoresistive playback,” IEEE Trans. Magn. 42 (10), 2285-7 (2006)
  72. Hijazi, R. Ikkawi, N. Amos, A. Lavrenov, N. Joshi, D. Doria, R. Chomko, D. Litvinov, and S. Khizroev, “Patterned soft underlayers for perpendicular media,” IEEE Trans. Magn. 42 (10), 2375-7 (2006)
  73. Chunsheng E, D. Smith, E. Svedberg, Khizroev, D. Litvinov, “Combinatorial synthesis of Co/Pd magnetic multilayers,” J. Appl. Phys. 99, 113901 (2006)
  74. Khizroev, Y. Hijazi, N. Amos, D. Doria, A. Lavrenov, R. Chomko, T.-M. Lu, D. Litvinov, “Three-dimensional magnetic recording – an emerging nanoelectronic technology,” J. Nanoelectronics and Optoelectronics 1, 1-18 (2006)
  75. Smith, Chunsheng E, S. Khizroev, D. Litvinov, “Magnetoresistive playback heads for bit-patterned medium recording applications,” J. Appl. Phys. 99, 014503 (2006)
  76. Parekh, Chunsheng E, D. Smith, A. Ruiz, P. Ruchoeft, E. Svedberg, S. Khizroev, D. Litvinov, “Fabrication of a high-anisotropy nanoscale patterned magnetic recording medium for data storage applications,” Nanotechnology 17, 2079 (2006)
  77. Khizroev, Y. Hijazi, N. Amos, R. Chomko, and D. Litvinov, “Considerations in the design of three-dimensional and multi-level magnetic recording,” J. Appl. Phys. 100, 63907 (2006)
  78. Chomko, D. Litvinov, and S. Khizroev, “A nanoscale transducer for perpendicular magnetic recording,” Appl. Phys. Lett. 87, 162503 (2005)
  79. Chunsheng E, D. Smith, J. Wolfe, D. Weller, Khizroev, D. Litvinov, “Physics of patterned magnetic medium recording: design considerations,” J. Appl. Phys.  98 , 024505 (2005)
  80. Khizroev, R. Chomko, Y. Hijazi, S. Mukherjee, R. Chantrell, X. Wu, R. Carley, D. Litvinov, “FIB-fabricated nanoscale magnetoresistive sensor,” Appl. Phys. Lett. 86, 42502 (2005)
  81. Litvinov, S. Khizroev, “Perpendicular recording: playback,” Appl. Phys. Reviews – Focused Review, JAP 97, 071101 (2005)
  82. Candocia, E. Svedberg, D. Litvinov, S. Khizroev, “Deconvolution processing for increasing the resolution of magnetic force microscopy measurements,” Nanotechnology 15, S575-84 (2004)
  83. Khizroev, D. Litvinov, “Physics of perpendicular recording: writing process,” Appl. Phys. Reviews – Focused Review, JAP 95 (9), 4521 (2004)
  84. Khizroev, D. Litvinov, “Focused-ion-beam-based rapid prototyping of Nanoscale magnetic devices,” Review in Nanotechnology 14, R7-15 (2004)
  85. Mukherjee, D. Litvinov, and S. Khizroev, “Atomic-scale modeling of nanoconstrictions,” IEEE Trans. Magn. 40 (4), 2143-5 (2004)
  86. Litvinov, E. Svedberg, T. Ambrose, F. Chen, E. Schlesinger, J. Bain, and S. Khizroev, “Ion implantation of magnetic thin-films and nanostructures,” JMMM 283 (1), 128-32 (2004)
  87. Litvinov, M.H. Kryder, and S. Khizroev, "Physics of Perpendicular Recording: Playback," Journal of Applied Physics 93 (11), 9155-64 (2003)
  88. Litvinov, S. Khizroev, “Overview of magneto-resistive probes heads for Nanoscale magnetic recording applications,” J. Magn. Magn. Mat. 264 (2-3), 275-83 (2003)
  89. Lyberatos, D. Litvinov, and S. Khizroev, "Thermal effects in the high-speed switching of the magnetization of fine grains," Japanese J. Appl. Phys. 42 (4A Part I), 1598-602 (2003)
  90. Khizroev and D. Litvinov, "Parallels between playback in perpendicular and longitudinal recording," J. Magn. Magn. Mat. 257 (1), 126-31 (2003)
  91. Svedberg, D. Litvinov, R. Gustafson, and S. Khizroev, "Magnetic force microscopy of skew angle dependencies in perpendicular magnetic recording," J. Appl. Phys. 93 (3), 2828-33 (2003)
  92. Khizroev, J. Bain, and D. Litvinov, "Focused ion beam fabrication of nanomagnetic probes," Nanotechnology 13, 619-22 (2002)
  93. Khizroev, D. A. Thompson, M. H. Kryder, and D. Litvinov, "Direct observation of magnetization switching in focused-ion-beam-fabricated magnetic nanotubes," Appl. Phys. Lett. 81 (12), 2256 (2002); Editor's choice for the Virtual Journal of Nanoscale Science & Technology, September 23rd (2002)
  94. B. Svedberg, S. Khizroev, C. H. Chang, and D. Litvinov, "Signal-to-noise deterioration in perpendicular storage media by thermal and magnetic field aging as determined by magnetic force microscopy," J. Appl. Phys. 92 (11), 6714-20 (2002)
  95. Khizroev, R. W. Gustafson, J. K. Howard, M. H. Kryder, and D. Litvinov, "Multiple magnetic image reflection in perpendicular recording," IEEE Trans. Magn. 38 (5), 2066-8 (2002)
  96. Litvinov, J. Wolfson, J. A. Bain, R. W. Gustafson, M. H. Kryder, and S. Khizroev, "Narrow-gap single pole heads," IEEE Trans. Magn. 38 (5), 2252-4 (2002)
  97. Litvinov, A. Lyberatos, M. H. Kryder, J. Wolfson, J. A. Bain, and S. Khizroev, "Recording layer influence on the dynamics of perpendicular recording," IEEE Trans. Magn 38 (5), 1994-6 (2002)
  98. Khizroev, A. Lyberatos, M. H. Kryder, and D. Litvinov, "Physics of perpendicular recording: effects of magnetic "charge" distribution," Japanese J. Appl. Phys., Part 2 Letters 41 (7A), L758-60 (2002)
  99. Litvinov and S. Khizroev, "Orientation-sensitive magnetic force microscopy in future probe storage applications," Appl. Phys. Lett. 81 (10), 1878 (2002); Editor's choice for the Virtual Journal of Nanoscale Science & Technology, September 9th (2002)
  100. Litvinov and S. Khizroev, "Perpendicular Recording: A Future Technology or a Temporary Solution," Proceedings of the 10th NASA Goddard Space Flight Center Conference on Mass Data Storage Systems and Technologies, 1-19 (2002)
  101. Khizroev, Y. Liu, K. Mountfield, M. Kryder, D. Litvinov, “Physics of perpendicular magnetic recording: writing process,” JMMM 246 (1-2), 335-44 (2002)
  102. Litvinov and S. Khizroev, “Focused ion beam (FIB) in future probe storage industry,” Nanotechnology 13, 179-84 (2002)
  103. Khizroev, D. Litvinov, “Response to Comment on `On the mechanism of the cubic phase formation in the boron nitride thin-film systems,'' Appl. Phys. Lett. 80 (7), 1308-9 (2002)
  104. Litvinov, J. Wolfson, J. Bain, R. Gustafson, M. H. Kryder, S. Khizroev, “The role of the gap in single pole heads in perpendicular recording, “IEEE Trans. Magn. 38 (4), 1658-63 (2002)
  105. Wu, L. Holloway, H. Laidler, K. O’Grady, S. Khizroev, D. Litvinov, J.K. Howard, R.W. Gustafson, “Magnetic characterization of perpendicular recording,” IEEE Trans. Magn. 38 (4), 1682-6 (2002)
  106. B. Svedberg, S. Khizroev, and D. Litvinov, “Magnetic force microscopy study of perpendicular media,” J. Appl. Phys. 91 (8), 5365-5370 (2002)
  107. Wolfson, J. Bain, S. Khizroev, D. Litvinov, “Dynamic Kerr imaging of soft underlayers (SUL’s) for perpendicular magnetic recording applications,” J. Appl. Phys. 91(10), 8665-9 (2002)
  108. Litvinov, M. Kryder, and S. Khizroev, “Recording physics of perpendicular media: recording layers,” J. Magn. Magn. Mat. 241(2-3), 453-465 (2002)
  109. Litvinov, T. Roscamp, Mei-Ling Wu, T. Klemmer, J. K. Howard, and S. Khizroev, “CoB/Pd multilayer based recording layers for perpendicular media,” 2001 MRS Proceedings 674, T3.9 (2001)
  110. Roy, D. Laughlin, T. Klemmer, K. Howard, S. Khizroev, and D. Litvinov, “Seed-layer effect on microstructure and magnetic properties of Co/Pd multilayers,” J. Appl. Phys. 89 (11), 7531-3 (2001)
  111. Lu, T. Klemmer, S. Khizroev, J. K. Howard, and D. Litvinov, “CoCrPtTa/Ti perpendicular media deposited at high sputtering rate,” IEEE Trans. Magn. 37 (4), 1319-21 (2001)
  112. Litvinov, J. Wolfson, J. Bain, R. White, R. Chomko, R. Chantrell, and S. Khizroev, “Dynamics of perpendicular recording heads,” IEEE Trans. Magn. 37 (4), 1376-8 ( 2001)
  113. Lyberatos, S. Khizroev, and D. Litvinov, “High speed coherent switching of longitudinal recording media,” IEEE Trans. Magn. 37 (4), 1369-71 (2001)
  114. Khizroev, M. Kryder, and D. Litvinov, “Next generation perpendicular systems,” IEEE Trans. Magn., 37 (4), 1922-4 (2001)
  115. Khizroev, D. Litvinov, “On the mechanism of the cubic phase formation in the boron nitride thin film systems,” Appl. Phys. Lett. 79 (3), 353-5 (2001)
  116. Litvinov, M. Kryder, and S. Khizroev, “Recording physics of perpendicular media: soft underlayers,” JMMM 232 (1-2), 84-90 (2001)
  117. Litvinov, R. Chomko, G. Chen, L. Abelmann, K. Ramstock, S. Khizroev, "Micromagnetics of a Soft Underlayer," IEEE Trans. Magn., 36 (5), 2483-5 (2001)
  118. Litvinov, H. Gong, D. Lambeth, S. Khizroev, K. Howard, “RHEED based texture determination: magnetic thin films for perpendicular media,” J. Appl. Phys., 87 (9), 5693-5 (2000)
  119. Abelmann, S. Khizroev, D. Litvinov, J. A. Bain, J. Zhu, M. H. Kryder, K. Ramstock, C. Lodder, “Micromagnetic simulation of ultra‑small single pole perpendicular heads,” J. Appl. Phys., 87 (9), 6636-8 (2000)
  120. Litvinov, R. Chomko and S. Khizroev, “Color based thin film quality characterization,” to be published in IEEE Trans. Measurements and Instruments (2002)
  121. Khizroev, M. H. Kryder, Y. Ikeda, K. Rubin, P. Arnett, M. Best, D. A. Thompson, “Recording heads with trackwidths suitable for 100 Gbit/in2 density, “IEEE Trans. Magn., 35 (5), 2544-6 (1999)
  122. P. Jayasekara, S. Khizroev, M. H. Kryder, W. Weresin, P. Kasiraj, Fleming, “Inductive write heads using high moment FeAlN pole,” IEEE Trans. Magn. , 35 (2) pt.1, 613-8 (1999)
  123. Khizroev, W. Jayasekara, J. A. Bain, R. E. Jones, Jr., M. H. Kryder, “MFM quantification of magnetic fields generated by ultra‑small single pole perpendicular heads,” IEEE Trans. Magn., 34 (4), pt.1, 2030-2 (1998)
  124. Khizroev, J. A. Bain, M. H. Kryder, “Considerations in the design of probe heads for 100 Gbit/in2 recording density,” IEEE Trans. Magn., 33 (5), pt.1, 2893-5 (1997)
  125. Khizroev, F. Zuo, G. C. Alexandrakis, J. A. Schlueter, U. Geiser, J. M. Williams, “Vortex pinning in layered organic superconductors: kappa-(BEDT-TTF)/sub 2/Cu[N(CN)/sub 2/]Br,“ J. Appl. Phys., 79 (8), pt.2B, 6586-8 (1996)
  126. Zuo, S. Khizroev, G. C. Alexandrakis, J. A. Schlueter, U. Geiser, J. M. Williams, ” Anomalous magnetization in single-crystal kappa‑[bis(ethylenedithiotetrathiafulvalene)]/sub2/Cu[N(CN)/sub2/]Br superconductors,” Physical Review B (Condensed Matter), 52 (18), R13126-9 (1995)
  127. Zuo, S. Khizroev, G. C. Alexandrakis, V. N. Kopylov, “Anomalous magnetization in single-crystal Tl/sub 2/Ba/sub2/CuO/sub 6/: Evidence of dimensional crossover, “Physical Review B (Condensed Matter), 52 (2), R755-8 (1995)
  128. Zuo, S. Khizroev, V. N. Kopylov, N. N. Kolesnikov, “Pinning of Josephson vortices in single crystals of Tl/sub2/Ba/sub 2/CuO/sub 6+ delta / superconductors, “Physica C, 243 (1-2), 117-22 (1995)
  129. Zuo, S. Khizroev, S. Voss, A. M. Hermann, “Vortex penetration in single-crystal Tl/sub 2/Ba/2/CuO/sub 6/ superconductors,” Physical Review B (Condensed Matter), 49 (13), 9252-5 (1994)
  130. Fontcuberta, L. Fabrega, X. Obradors, F. Zuo, S. Khizroev, X. Jiang; J. L. Peng, R. L. Greene, “Josephson decoupling in Nd/sub 1.85/Ce/sub 0.15/CuO/sub 4/ revisited, “Physical Review Letters, 73 (24), 3327-8 (1994)
  131. Zuo, S. Khizroev, X. Jiang; J. L. Peng, R. L. Greene, “Surface barriers and two-dimensional-collective pinning in single crystal Nd/sub 1.85/Ce/sub 0.15/CuO/sub 4- delta / superconductors, “Journal of Applied Physics, 76 (10), pt.2, 6953-5 (1994)
  132. Zuo, S. Khizroev, X. Jiang, J. L. Peng, R. L. Greene, “Evidence of thermal nucleation of two- dimensional point vortices in single-crystal Nd/sub 1.85/Ce/sub 0.15/Cu/sub2/O/sub 4-y/ superconductors, “Physical Review B (Condensed Matter), 49 (17) 12326-9 (1994)
  133. Zuo, S. Khizroev, X. Jiang; J. L. Peng, R. L. Greene, “Josephson decoupling in single crystal Nd/sub 1.85/Ce/0.15/Cu/sub2/O/sub 4-y/ superconductors, “Physical Review Letters, 72 (11), 1746-9 (1994)