Department of Electrical and Computer Engineering

EEL4583 Introduction to RF Systems

Fall 2021 Professor Elias A. Alwan ealwan@fiu.edu (305)348-5424

Office Hours: M 09:00 AM-12 PM Office: EC 3952

Day and Time: Wednesdays, 5:00pm-7:40pm

Location: EC1113

Course Description and Purpose

The course introduces the basic concepts of wireless transceiver design for digital communications.

Textbook: Kevin McClaning, "Wireless Receiver Design for Digital Communications, 2nd Edition" SciTech Publishing, 2012, ISBN13-978-1891121807.

Other Reference: Tony J. Rouphael, "Wireless Receiver Architectures and Design: Antennas, RF, Synthesizers, Mixed Signal, and Digital Signal Processing," Elsevier Science, ISBN: 97-801-2378640.

SOFTWARE

Microwave Office, ADS

Prerequisite Courses

EEL 3514 – Communication Systems

Course Objectives

Upon completing this course, students will be able to:

- Apply RF terminology such as dB, dBm, S-parameters, VSWR, return loss, mismatch loss
- Introduce the main RF system blocks in transceivers and their functions: low noise amplifiers, mixer, voltage-controlled oscillators, filters, digitizers, ...
- Study impairment in RF front-ends

- Understand main concepts and measurement parameters such as phase noise, sensitivity, temperature, non-linearity, EVM, BER, dynamic range, and their impact on RF systems.
- Analyze the trade-offs between different RF architectures and their requirements
- Introduce examples of radio architectures from commercial systems.

Important Information

Before starting this course, please review the following pages:

- Accessibility and Accommodation
- Academic Misconduct Statement

*Instructors retain the right to modify the course syllabus for any reason throughout the semester provided that:

- fair and adequate notice is given to enrolled students either by e mail, in writing, or through online publishing.
- modifications to the syllabus are not arbitrary or capricious; and,
- students are not unfairly disadvantaged by mid semester changes to grading standards, attendance standards, or performance measures.

Department Regulations Concerning Incomplete Grades

To qualify for an Incomplete, a student:

- 1. Must contact (e.g., phone, email, etc.) the instructor or secretary before or during missed portion of class.
- 2. Must be passing the course prior to that part of the course that is not completed
- 3. Must make up the incomplete work through the instructor of the course
- 4. Must see the instructor. All missed work must be finished before last two weeks of the following term.

ABET Relationship of course to program outcomes:

(Sel	ect correspondin	g boxes be	clow to appl	licable progi	ram outcomes	for the course.)
------	------------------	------------	--------------	---------------	--------------	------------------

- ☑ 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
 ☐ 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
 ☐ 3. an ability to communicate effectively with a range of audiences.
 ☐ 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- □ 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet

objectives.

- □ an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- ⊠ 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Sample Grading Scheme

Letter	Range%	Letter	Range%	Letter	Range%
A	95 or above	В	83 - 86	C	70 - 76
A-	90 - 94	B-	80 - 82	D	60 - 69
B+	87 - 89	C+	77 - 79	F	59 or less

GRADING POLICY

Gradin	g Policy
Topic	Percentage
Homework/Pop Quizzes	10%
Project	15%
Exam I	25%
Exam II	25%
Final	25%

HOMEWORK

- Will be assigned weekly
- Homework submitted through Canvas
- Some homework will include a small MATLAB/RF CAD exercise. Tutorials will be provided by the instructor.

PROJECT

- Students are encouraged to form a team of up to 4 students
- Each group has the choice to pick either a research project or simulation-based project
- Research topics will be provided by the instructor

MIDTERMS

- In-class exam
- One (1) cheat sheet
- No smartphones & no Google

- Based on Class and Homework
- There is a possibility for a web-based exam

FINAL EXAM

- Taken during Final Examination Week
- Comprehensive
- Web-based or in-class multiple-choice exam
- Open book. Closed notes, no Google

TOPICS

- 1. Radio frequency basics: Decibels, impedance matching, S-parameters
- 2. Signals, noise, and modulation: white noise, analog and digital modulation, quadrature modulations, spectrum analysis
- 3. Filters: reviews of different types of filters in RF systems
- 4. Noise Fundamentals: equivalent models for RF devices, signal to noise ratio, cascade performance, sensitivity, dynamic range
- 5. Linearity: distortion, Intermodulation, amplifier nonlinearity, gain compression and output saturation.
- 6. Mixers: study mixer operation, frequency inversion, image frequency, spurious calculations.
- 7. Oscillators: Ideal and real-world oscillator, phase noise, spurious components.
- 8. Cascade designs: minimum detectable signal, dynamic range, gain distribution, system non-linearity
- 9. Digitizers: analog to digital converters, digital to analog converters
- 10. Transceiver architecture: design system architectures using knowledge from previous chapters.

Course Schedule

Session	Topic	Book Chapter
1	Syllabus / RF Basics	1
2	Signals, Noise Modulation	2
	Propagation	3
3	Antennas	4
	Filters	5

4	Noise	6	
	Noise	6	
5	Noise	6	
6	Exam I	Chapters 1, 2, 3, 4, 5, & 6	
	Linearity	7	
7	Linearity	7	
	Linearity	7	
8	Mixers	8	
	Mixers	8	
9	Oscillators	9	
	Oscillators	9	
10	Cascade Design	10	
	Cascade Design	10	
	D II	Chapters 7, 8, 9, & 10	
11	Exam II	Chapters 7, 0, 2, & 10	
11	Digitizing	11	
11			
	Digitizing	11	
	Digitizing Digitizing	11 11	
12	Digitizing Digitizing Modulation/Demodulation	11 11 12	
12	Digitizing Digitizing Modulation/Demodulation Transceiver Architectures	11 11 12 Other references	
12	Digitizing Digitizing Modulation/Demodulation Transceiver Architectures Transceiver Architectures	11 11 12 Other references Other references	
12	Digitizing Digitizing Modulation/Demodulation Transceiver Architectures Transceiver Architectures Transceiver Architectures	11 12 Other references Other references Other references	
12	Digitizing Digitizing Modulation/Demodulation Transceiver Architectures Transceiver Architectures Transceiver Architectures Transceiver Architectures	11 12 Other references Other references Other references	
13	Digitizing Digitizing Modulation/Demodulation Transceiver Architectures Transceiver Architectures Transceiver Architectures Transceiver Architectures Project Presentation	11 12 Other references Other references Other references	